A Multi-level Sketch-based Interface for Decorative Pattern Exploration

Supplementary File: Methodology Details

Yilan Chen Hongbo Fu Kin Chung Au
School of Creative Media, City University of Hong Kong

Shape Feature

When computing the distance between two Tensor descriptors, the empty cells of the input sketch are masked off. Since a sketch is usually much simpler than decorative images, this method can avoid the tendency for images that are as sparse as the sketch.

Reflection feature

Denoting the reflection feature of the input sketch as $V_{\text {sketch }}\left\{v_{1}, v_{2}, \ldots\right\}$, the minimum distance between a unit vector $v \in V_{\text {sketch }}$ and another reflection feature $V_{\text {image }}$ is

$$
f\left(v, V_{\text {image }}\right)=\min _{v_{k} \in V_{\text {image }}} \angle\left(v, v_{k}\right),
$$

where $\angle(\because, \cdot)$ maps the angle between two vectors to $[0, \pi / 2]$, and the result is set as the maximum $\pi / 2$ if $V_{\text {image }}$ is a null set. The sum of such minimum distances represents the distance from $V_{\text {sketch }}$ to $V_{\text {image }}$, vice versa. Therefore, the distance between two reflection features is defined as

$$
D_{\text {ref }}=\sum_{\hat{v} \in V_{\text {sketch }}} f\left(\hat{v}, V_{\text {image }}\right)+\sum_{v \in V_{\text {image }}} f\left(v, V_{\text {sketch }}\right) \cdot(1-\alpha \beta)
$$

where $\alpha=0.5$ in our implementation.
Rotation feature
Denoting the specified rotation feature as $C_{\text {sketch }}$ and another feature as $C_{\text {image }}$, the two rotation symmetries are hierarchical if

$$
C_{\text {sketch }} \bmod C_{\text {image }}=0
$$

Translation feature

Denoting the translation feature as $T_{\text {sketch }}\left\{v_{1}, v_{2}, \ldots\right\}$, the distance between it and another translation feature $T_{\text {image }}$ is represented as

$$
D_{\text {trans }}=\sum_{\widehat{v}_{l} \in T_{\text {sketch }}}\left[\min _{v_{j} \in T_{\text {image }}} \angle\left(\widehat{v}_{l}, v_{j}\right)+\omega| | \widehat{v}_{l}\left|-\left|v_{j}\right|\right|\right]+\lambda \sum_{v \in T_{\text {image }}} f\left(v, T_{\text {sketch }}\right),
$$

where the weight $\lambda=0.3$ in our implementation and ω is a binary number which equals to 1 when a lattice is sketched.

